Приветствую!
Продолжаем изучать руководство по применению операционного усилителя.
Материал получен с сайта АО «КОМПЭЛ» — compel.ru.
Оригинал на английском языке в формате pdf
A compendium of blog posts on op amp design topics by Bruce Trump (17,1 МиБ, 1 632 hits)
Полную версию на русском языке можно получить по запросу на deneb-80@mail.ru.
<< Предыдущие главы 1-10 | Следующие главы 21-31>>
ГЛАВА 11 – Использование входных резисторов для устранения входного тока смещения. Действительно ли они нужны?
В предыдущей статье я рассмотрел использование согласующего резистора для уменьшения влияния тока смещения за счет выравнивания сопротивлений по входам операционного усилителя. При этом я пришел к выводу, что такое решение зачастую не так уж и эффективно, и даже может даже нанести ущерб другим параметрам схемы.
В заключении к предыдущему разделу я сказал, что есть определенные операционные усилители, для которых использование согласующего резистора не рекомендуется. Это касается ОУ с биполярными входами со встроенной компенсацией входного тока смещения. Их источники тока, I1 и I2, формируют ток базы для пары входных транзисторов (рисунок 24). Эти тщательно согласованные токи, полученные с помощью токовых зеркал, закачиваются в базы транзисторов через входы ОУ.
ГЛАВА 12 – Почему в схемах с ОУ возникают колебания: интуитивный взгляд на две наиболее частые причины
Диаграммы Боде, или логарифмические амплитудно-фазовые частотные характеристики, являясь отличным аналитическим инструментом, не выглядят интуитивно понятными. В данном разделе мы воспользуемся чисто качественным рассмотрением часто встречающихся причин неустойчивости и самовозбуждения операционных усилителей (ОУ).
На рисунке 26 представлен идеальный импульсный отклик, который можно наблюдать при отсутствии задержки в цепи обратной связи. Рост выходного напряжения постепенно замедляется, поскольку сигнал обратной связи сообщает о приближении к уровню конечного напряжения.
ГЛАВА 13 – Приручаем нестабильный ОУ
В предыдущей публикации я рассмотрел две наиболее распространенные причины возникновения колебаний или нестабильности в схемах с операционными усилителями. При этом исходной причиной этих негативных явлений была задержка или сдвиг фазы в цепи обратной связи.
Простой неинвертирующий усилитель может быть неустойчивым или иметь чрезмерное перерегулирование и осцилляции, если сдвиг фазы или задержка, создаваемые входной емкостью ОУ (плюс некоторая паразитная емкость) совместно с сопротивлением цепи обратной связи, слишком велики (рисунок 29).
ГЛАВА 14 – Приручаем колебания: проблемы с емкостной нагрузкой
Я оценивал устойчивость операционных усилителей, анализируя, каким образом фазовый сдвиг (его можно назвать также задержкой) в цепи обратной связи приводит к возникновению колебаний. Поднятая в статьях «Почему в схемах с ОУ возникают колебания: интуитивный взгляд на две наиболее частые причины» и «Приручаем нестабильный ОУ» проблема с устойчивостью при емкостной нагрузке довольно непроста.
Здесь главным источником проблем становится выходное сопротивление операционного усилителя с разомкнутой обратной связью (Ro), которое на самом деле не является резистором в буквальном смысле этого слова. Это эквивалентное сопротивление, зависящее от внутренней схемы ОУ. Невозможно изменить его без изменения самого операционного усилителя. Пусть CL – емкость нагрузки. При работе с такой емкостью вы автоматически получаете полюс, определяемый значениями Ro и CL. Полюс на частоте 1,8 МГц в контуре обратной связи 20 МГц операционного усилителя с G = 1 способен вызвать проблемы. Это хорошо видно на рисунке 32.
ГЛАВА 15 – SPICE-моделирование устойчивости ОУ
Программы SPICE-моделирования являются полезным инструментом, помогающим обнаруживать потенциальные проблемы с устойчивостью схем усилителей. Рассмотрим один конкретный пример.
На рисунке 35 показан типовой неинвертирующий усилитель на базе OPA211 с несколькими незначительными типовыми особенностями. Звено R3 – C1 является входным фильтром. R4 – выходной резистор для защиты от коротких замыканий на выходе. Конденсатор CL имитирует пятифутовый кабель.
ГЛАВА 16 – Входная емкость: синфазная? дифференциальная? или…?
Характеристики входных емкостей операционных усилителей часто путают или вовсе игнорируют. Давайте уточним, как наилучшим образом использовать эти параметры.
Входная емкость на инвертирующем входе может влиять на устойчивость схемы с ОУ, вызывая фазовый сдвиг – задержку сигнала обратной связи, возвращаемого на инвертирующий вход. Цепь обратной связи совместно со входной емкостью создают нежелательный полюс. Изменение импеданса цепи обратной связи с учетом величины входной емкости является важным шагом для обеспечения устойчивости схемы усилителя. Но какую емкость использовать в расчетах? Дифференциальную? Синфазную? Обе?
Входная емкость ОУ, как правило, приводится в документации совместно со значением входного импеданса, это касается как дифференциальной, так и синфазной емкостей (таблица 5).
ГЛАВА 17 – Операционные усилители: с внутренней компенсацией и декомпенсированные
Операционные усилители с внутренней частотной компенсацией (Unity-gain-stable) являются устойчивыми даже при работе в схеме с единичным усилением G = +1, в которой выходной сигнал полностью поступает обратно на инвертирующий вход. Будет не совсем правильно называть такую конфигурацию худшим вариантом по запасу устойчивости. Лучше называть ее общепринятой тестовой схемой.
Декомпенсированные операционные усилители имеют компенсационные конденсаторы меньшей емкости, которые обеспечивают более широкую полосу пропускания (GBW) и более высокую скорость нарастания. Увеличение скорости нарастания обычно требует повышенной мощности, но за счет уменьшения емкости тот же базовый операционный усилитель может быть значительно быстрее при том же рабочем токе. Однако такие ОУ не являются устойчивыми в схеме с единичным усилением — они должны использоваться с коэффициентом усиления, значительно превышающим единицу.
На рисунке 41 показана критическая часть АЧХ для идеализированной пары усилителей: со встроенной компенсацией и декомпенсированного. Декомпенсированная версия имеет в пять раз более широкую полосу пропускания GBW: 10 МГц против 2 МГц. Скорость изменения АЧХ для обоих ОУ примерно одинакова. Стоит отметить, что частота единичного усиления для компенсированного ОУ немного меньше, чем его GBW, для таких случаев это обычное явление. Частота единичного усиления декомпенсированного усилителя составляет половину его GBW. Нет смысла работать с таким усилителем при коэффициенте шумового усиления, близком к частоте единичного усиления, поскольку второй полюс на частоте 3 МГц сильно влияет на значение коэффициента усиления/фазы в этой области. Запас по фазе здесь будет недостаточным.
ГЛАВА 18 – Инвертирующий усилитель с G = -0,1: является ли он неустойчивым?
Компенсированные усилители являются устойчивыми в схемах с коэффициентом усиления, равным единице и больше. Но ведь – не меньше единицы?, А что тогда делать со схемами, подобными той, что изображена на рисунке 43?
Если говорить коротко, данный инвертирующий аттенюатор стабилен! Вы хотите знать, почему? Есть несколько способов прояснить ситуацию, и объяснение «на пальцах» может внести дополнительную ясность в общую картину проблем с устойчивостью.
Рассмотрим пример. Если при G = -0,1 схема была бы неустойчивой, то при более низком коэффициенте усиления все было бы еще хуже, не так ли? Рассмотрим схему с единичным усилением и с резистором 1 Ом в цепи обратной связи, показанную на рисунке 44. Теперь предположим наличие тока утечки по поверхности печатной платы, для чего добавим входной резистор R1 = 10 ГОм. Этот паразитный входной сигнал инвертируется и усиливается с очень малым коэффициентом усиления. Схема будет неустойчивой? Конечно, нет! Это по-прежнему всего лишь буфер с единичным усилением, с заземленным входом. Итак, схема устойчива.
ГЛАВА 19 – Моделирование полосы усиления: базовая модель ОУ
Не всегда очевидно, каким образом полоса пропускания операционного усилителя (GBW) может повлиять на работу вашей схемы. Макромодели используют фиксированное значение GBW. Вы, конечно, можете заглянуть внутрь этих моделей, но лучше с ними не возиться. Что же тогда делать?
Чтобы проверить вашу схему на чувствительность к ширине полосы пропускания ОУ, лучше всего использовать общую модель операционного усилителя в программе SPICE-моделирования. Большинство симуляторов SPICE имеет простую модель операционного усилителя, которую вы можете легко изменить. На рисунке 46 показан один пример из программы TINA-TI.
ГЛАВА 20 – Ограничение скорости нарастания выходного сигнала ОУ
Поведение операционных усилителей в режиме ограничения скорости нарастания часто вызывает недопонимание. Это объемная тема, поэтому давайте разбираться поэтапно.
Между входами ОУ обычно присутствует очень небольшое напряжение, в идеале – ноль, не так ли? Но внезапное изменение входного сигнала временно приводит к тому, что контур обратной связи выходит из равновесия, создавая дифференциальное напряжение ошибки между входами операционного усилителя. Это заставляет ОУ увеличивать выходное напряжение для исправления ошибки рассогласования. Чем больше рассогласование, тем выше скорость нарастания сигнала на выходе. Однако увеличение скорости нарастания не бесконечно. При достаточно большом дифференциальном напряжении на входе скорость нарастания достигает своего предела.
Если амплитуда входного прямоугольного импульса достаточно велика, то скорость нарастания выходного сигнала достигает своего предела. При дальнейшем увеличении амплитуды скорость нарастания на выходе не изменится. На рисунке 49 на примере простой схемы демонстрируется, почему так происходит. При постоянном входном напряжении в схеме с замкнутым контуром между входами операционного усилителя присутствует нулевое напряжение. Входной каскад сбалансирован, а ток IS1 равномерно распределяется между двумя входными транзисторами. Если напряжение входного прямоугольного сигнала превышает 350 мВ, то весь ток IS1 начинает протекать по одному плечу входного каскада. Этот ток заряжает (или разряжает) компенсационный конденсатор Миллера – C1. Скорость нарастания выходного сигнала (Slew rate, SR) – это скорость, с которой IS1 заряжает C1. Она равна IS1/C1.
<< Предыдущие главы 1-10 | Следующие главы 21-31>>
Оставить сообщение:
[contact-form-7 id=”3550″ title=”Контактная форма 1″]
См. также:
- Справочная информация для инженеров.
- Правильная цоколевка транзисторов.
- Миниатюрный драйвер светодиодов.
- CL6807. Регулировка яркости.
- Генератор импульсов на ATmega8.
- Обозначения схем контактов выключателей (переключателей) и контактов реле (Forms of Contacts).